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Abstract

In this paper, we study on semi-invariant submanifolds of normal complex contact metric man-
ifolds. We give the definition of such submanifolds and we obtain useful relations. Moreover,
we give the integrability conditions of distributions.
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1 Introduction

Contact geometry could be divided into two parts: real and complex. The geometry of real contact
manifolds have been studied from 1960s, and there are a great number of articles in literature.
Although the complex contact geometry is old as real contact geometry, there do not exist researches
as real case. On the other hand, results have been obtained in complex contact manifolds are
different from real contact manifolds. Also complex contact manifolds have several applications in
optimal control of entanglements [1]. The Riemannian geometry of complex contact manifolds has
a lot of open problems. One of them is the submanifold theory of complex contact manifolds. In
this paper, we aim enter to this notion comprehensively.
The definition of a complex contact manifold was given by Kobayashi [2] as follows: Let M be a
complex manifold of odd complex dimension 2m+1 covered by an open covering A = {Ui} consisting
of coordinate neighborhoods. If there is a holomorphic 1-form ωi on each Ui ∈ A in such a way
that for any Ui,Uj ∈ A and for a holomorphic function fij on Ui ∩ Uj 6= ∅

ωi ∧ (dωj)
m 6= 0 in Ui,

ωi = fijωj , Ui ∩ Uj 6= ∅,

then the set {(ωi,Ui) | Ui ∈ A} of local structures is called complex contact structure and with this
structure M is called a complex contact manifolds.
In this definition there is a natural question: Is the complex contact form globally defined? Kobayashi
proved that the complex contact form is globally defined if and only if first Chern class of the
manifold is zero. If complex contact form is globally defined then the manifold is called strict
complex contact manifold. In 1980s there was an important development on Riemannian geometry
of complex contact manifolds. Ishihara and Konishi [3] introduced complex almost contact metric
structure and gave normality. We recall this normality by IK-normality. They also proved that
under normality condition the base manifold is Kähler. In 2000 Korkmaz extended this definition.
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If the complex almost contact metric manifold is normal by Korkmaz’s sense it is called a normal
complex contact metric manifold, and in this study we use this notion. Also Korkmaz [4, 5, 6] gave
curvature properties, GH−sectional curvature, complex contact space form, complex (κ, µ) spaces
and nullity conditions.
In recent years, there are some works on normal complex contact metric manifolds which are related
to Korkmaz’s normality. Blair and one of the present authors studied energy and corrected energy
of vertical distribution for normal complex contact metric manifolds in [8, 7]. Fetcu studied an
adapted connection on a strict complex contact manifolds and harmonic maps between complex
Sasakian manifolds in [9, 10]. Blair and Molina [11] studied conformal and Bochner curvature
tensor of normal complex contact metric manifolds. In 2012, Blair and Mihai studied on complex
(κ, µ)−space and they studied on locally symmetric condition of normal complex contact metric
manifolds [12, 13]. Present authors [14] gave new results on curvature properties and normality
conditions. Quasi-conformal, concircular and conharmonic flatness of normal complex contact met-
ric manifolds are studied by presents authors [15] and they proved there are no normal complex
contact metric manifolds under these tensors flatness.
The submanifold theory of complex contact manifolds has not studied yet, effectively. This is an
area of awaiting attention, with many open problems. Turgut Vanlı studied on this subject [16, 17].
With above reasons our aim, is to give an introduction for the special submanifolds of complex
contact manifolds. We take into consider the normality notion is given by Korkmaz [5]. By this
way, our paper is organized as follow. The first section is on fundamental facts on complex contact
manifolds. In the second section we give the definition for a semi-invariant submanifold of a nor-
mal complex contact metric manifold and obtain some relations. Finally, we give the integrability
conditions of distributions in the last section .

2 Preliminaries

In this section we give a survey for complex contact manifolds. For further information we refer to
reader [18] and [5].

Let (M,ωi) be a complex contact manifold. For every p ∈ M we have a subspace of TpM by
kernel of ωi:

Hi = {Kp : ωi(Kp) = 0,Kp ∈ TpM}.

Then on Ui∩Uj 6= 0 we haveHi = Hj and soH = ∪Hi. H is well-defined, 2m−complex dimensional
non-integrable subbundle on M and it is called the contact subbundle or the horizontal subbundle.
Let (M,ωi) be a complex contact manifold. For every p ∈M we have a subspace of TpM by kernel
of ωi:

Hi = {Kp : ωi(Kp) = 0,Kp ∈ TpM}.

Then on Ui∩Uj 6= 0 we haveHi = Hj and soH = ∪Hi. H is well-defined, 2m−complex dimensional
non-integrable subbundle on M and it is called the horizontal subbundle.

Ishihara and Konishi [3] proved that M admits always an almost contact structure of C∞.
They also give the Hermitian metric. An odd complex 2m+ 1−dimensional complex manifold with
Hermitian metric and almost contact structure is called complex almost contact metric manifold.

Let M be a odd complex 2m + 1−dimensional complex manifold with complex structure J ,
Hermitian metric g, and A = {Ui} be an open covering of M with coordinate neighborhoods {Ui}.
If M satisfies the following two conditions then it is called a complex almost contact metric manifold :
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1. In each Ui there exist 1-forms ui and vi = ui ◦ J , with dual vector fields Ui and Vi = −JUi
and (1, 1) tensor fields Gi and Hi = GiJ such that

H2
i = G2

i = −I + ui ⊗ Ui + vi ⊗ Vi (2.1)

GiJ = −JGi, GUi = 0,

g(K,GiL) = −g(GiK,L).

2. On Ui ∩ Uj 6= ∅ we have

uj = cui − dvi, vj = dui + cvi,

Gj = cGi − dHi, Hj = dGi + cHi

where c and d are functions on Ui ∩ Uj with c2 + d2 = 1 [3].

By direct computation we have

HiGi = −GiHi = Ji + ui ⊗ Vi − vi ⊗ Ui
JiHi = −HiJi = Gi

GiUi = GiVi = HiUi = HiVi = 0

uiGi = viGi = uiHi = viHi = 0

JiVi = Ui, g(Ui, Vi) = 0

g(HiX,Y ) = −g(X,HiY ).

Since ui and vi are dual to the vector fields Ui and Vi , on Ui ∩ Uj we have Uj = aUi − bVi and
Vj = bUi+aVi. Also since a2 + b2 = 1, Uj ∧Vj = Ui∧Vi. Thus U and V determine a global vertical
distribution V by ξi = Ui ∧ Vi which is typically assumed to be integrable. Moreover V is complex
line bundle TM/H. Then we have TM = H⊕ V.
From now on we will not use subscript for shortness, if Ui is understood.

In addition, we have

du(K,L) = g(K,GL) + (σ ∧ v)(K,L),

dv(K,L) = g(K,HL)− (σ ∧ u)(K,L)

where σ(K) = g(∇KU, V ), and ∇ being the Levi-Civita connection of g [3].
Ishihara and Konishi [3] defined following tensors ;

S(K,L) = [G,G](K,L) + 2g(K,GL)U − 2g(K,HL)V

+2(v(L)HK − v(K)HL) + σ(GL)HK

−σ(GK)HL+ σ(K)GHL− σ(L)GHK,

T (K,L) = [H,H](K,L)− 2g(K,GL)U + 2g(K,HL)V

+2(u(L)GK − u(K)GL) + σ(HK)GL

−σ(HL)GK + σ(K)GHL− σ(L)GHK
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where
[G,G](K,L) = (∇GKG)L− (∇GLG)K −G(∇KG)L+G(∇LG)K

is the Nijenhuis torsion of G. Then they called an associated metric g normal if S = T = 0. It
is called IK-normality. In generally we consider whether or not the complex analogue of the real
normal contact examples are IK-normal. The canonical example, complex Heisenberg group is not
IK-normal [18]. Because it is not Kähler. In 2000 Korkmaz [5] gave a weaker definition. In this
sense, M is normal if the following two conditions are satisfied [5] :

1. S(K,L) = T (K,L) = 0 for all K,L in H,

2. S (K,U) = T (K,V ) = 0 for all K.

A normal complex contact metric manifold is semi-Kähler and the complex Heisenberg group is
normal. In this paper, we use this notion of normality.

Korkmaz [5] obtained following equalities:

∇KU = −GK + σ(K)V, (2.2)

∇KV = −HK − σ(K)U, (2.3)

∇UU = σ(U)V, ∇UV = −σ(U)U (2.4)

∇V U = σ(V )V, ∇V V = −σ(V )U,

dσ(GK,GL) = dσ(HK,HL) (2.5)

= dσ(L,K)− 2u ∧ v(L,K)dσ(U, V ).

Theorem 2.1. [5] M is normal if and only if

g((∇KG)L,Z) = σ(K)g(HL,Z) + v(K)dσ(GZ,GL) (2.6)

−2v(K)g(HGL,Z)− u(L)g(K,Z)

−v(L)g(JK,Z) + u(Z)g(K,L)

+v(Z)g(JK,L),

g((∇KH)L,Z) = −σ(K)g(GL,Z)− u(K)dσ(HZ,HL) (2.7)

−2u(K)g(HGL,Z) + u(L)g(JK,Z)

−v(L)g(K,Z)− u(Z)g(JK,L)

+v(Z)g(K,L).

Also from above proposition we have

g((∇KJ)L,Z) = u(K)(dσ(Z,GL)− 2g(HL,Z)) (2.8)

+ v(K)(dσ(Z,HL) + 2g(GL,Z)).

Ishihara and Konishi [3] proved a normality condition by the term of he covariant derivatives of G
and H. In [14] we obtain following theorem for a normal complex contact metric manifold .
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Theorem 2.2. M is normal if and only if the covariant derivative of G and H have the following
forms:

(∇KG)L = σ(K)HL− 2v(K)JL− u (L)K (2.9)

−v(L)JK + v(K) (2JL0 − (∇UJ)GL0)

+g(K,L)U + g(JK,L)V

−dσ(U, V )v(K) (u(L)V − v(L)U) ,

(∇KH)L = −σ(K)GL+ 2u(K)JL+ u(L)JK (2.10)

−v(L)X + u(K) (−2JL0 − (∇UJ)GL0)

−g(JK,L)U + g(K,L)V

+dσ(U, V )u(K) (u(L)V − v(L)U)

where K = K0 + u(K)U + v(K)V and L = L0 + u(L)U + v(L)V,K0, L0 ∈ H.

From this theorem we have

(∇KJ)L = −2u (K)HL+ 2v(K)GL+ u(K) (2HL0 + (∇UJ)L0)

+ v(K) (−2GL0 + (∇UJ) JL0) .

3 Fundamental facts on submanifolds of normal complex contact
metric manifolds

Let (M̄4m+2, Ḡ, H̄, J̄ , Ū , V̄ , ū, v̄, ḡ) be a normal complex contact metric manifold, M be a (n +
2)−real dimensional complex submanifold of M̄ and Ū , V̄ be tangent to M , where n must be even.
The Gauss formula is given by

∇̄KL = ∇KL+ h(K,L). (3.1)

h is called the second fundamental form, and it is defined by:

h(K,L) =

r∑
α=1

(hα(K,L)Nα + kα(K,L)J̄Nα).

where r = 4m−n
2 . We have the Wiengarten formulas which are given by

∇̄KN = −ANK +∇⊥KN (3.2)

∇̄K J̄N = −AJ̄NK +∇⊥K J̄N (3.3)

where AN and AJ̄N are fundamental forms related to N and J̄N . Also for sα(K), tα(K) and
s̃α(K), t̃α(K) coefficients

∇⊥KN =

r∑
α=1

(
sα(K)Nα + tα(K)J̄Nα

)
and ∇⊥K J̄N =

r∑
α=1

(
s̃α(K)Nα + t̃α(K)J̄Nα)

∇̄,∇ and ∇⊥ are the Riemannian, induced connection and induced normal connections on M̄ , M
and the normal bundle TM⊥ of M , respectively. By easy computation we get following result.
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Corollary 3.1. For any K,L ∈ Γ(TM) and N ∈ Γ(TM⊥) we have ḡ(h(K,L), N) = ḡ(ANK,L).

The mean curvature µ of M is defined by µ = trace h
dim M . M is a totally umbilical submanifold if

h(K,L) = g(K,L)µ (3.4)

for all K,L ∈ Γ(TM) .
Since Ū , V̄ ∈ Γ(TM) we can write TM = sp{Ū , V̄ }⊕sp{Ū , V̄ }⊥ where sp{Ū , V̄ } is the distribution
spanned by Ū , V̄ and sp{Ū , V̄ }⊥ is the complementary orthogonal distribution of sp{Ū , V̄ } in M.
Then for any vector field K is tangent to M we have ḠK ∈ sp{Ū , V̄ }⊥ and H̄K ∈ sp{Ū , V̄ }⊥.
Let define following projections;

P : Γ(TM)→ Γ(TM) , Q : Γ(TM)→ Γ(TM)⊥.

Then we can write
ḠK = PK +QK (3.5)

where PK and QK are the tangential and normal part of ḠK, respectively. Since H̄ = ḠJ̄ we
have

H̄K = P J̄K +QJ̄K. (3.6)

Defined in this way P is an isomorphism on Γ(TM) and Q is a normal valued 1-form on Γ(TM).
Therefore one can define two distributions for p ∈M as follows

Dp = ker{Q|sp{Ū,V̄ }⊥} = {Kp ∈ sp{Ū , V̄ }⊥ : Q(Kp) = 0}

D⊥p = ker{P |sp{Ū,V̄ }⊥} = {Kp ∈ sp{Ū , V̄ }⊥ : P (Kp) = 0}.

The following result is directly obtained from the definition of Dp and D⊥p .

Proposition 3.2. Dp ve D⊥p are orthogonal subspaces of TpM .

On the other hand for any vector field N normal to M we put

ḠN = BN + CN (3.7)

and
H̄N = BJ̄N + CJ̄N. (3.8)

where BN, BJ̄N are tangential parts and CN, CJ̄N are normal parts of ḠN, H̄N , respectively.
Therefore we have projections

B : Γ(TM⊥)→ Γ(TM) and C : Γ(TM⊥)→ Γ(TM⊥).

4 Semi-invariant submanifolds of normal complex contact metric
manifolds

CR-submanifolds are important classes of complex submanifold theory. Similar to the definition of
CR-submanifold, a semi-invariant submanifold of a Sasakian manifold was defined by Bejancu and
Papaghuic [19]. We give an analogue definition for complex contact case.
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Let (M̄4m+2, Ḡ, H̄, J̄ , Ū , V̄ , ū, v̄, ḡ) be a normal complex contact metric manifold, and M be a
complex submanifold of M̄ . If the dimensions of Dp and D⊥p are constant along to M and

D : p→ Dp , D⊥ : p→ D⊥p

are differentiable then M is called a semi-invariant submanifold of M̄ . Bejancu and Papaghuic
proved two results (Proposition 1.1 and Proposition 1.2 in [19]) about invariance of these distribu-
tions. Similarly we obtain following propositions for complex contact case.

Proposition 4.1. The distribution D is the maximal invariant distribution in sp{Ū , V̄ }⊥; that is,
we have

1. ḠDp = H̄Dp = Dp

2. If D′p ⊂ sp{Ū , V̄ }⊥ and ḠD′p = H̄D′p = D′p then we have D′p ⊂ Dp .

Proposition 4.2. The distribution D⊥p is the maximal anti-invariant distribution in sp{Ū , V̄ }⊥;
that is, we have

1. ḠD⊥p ⊂ T⊥p M , H̄D⊥p ⊂ T⊥p M

2. If D′′p ⊂ sp{Ū , V̄ }⊥ and ḠD′′p ⊂ T⊥p M , H̄D′′p ⊂ T⊥p M then we have D′′p ⊂ D⊥p for any p ∈M .

In real Sasakian geometry, Bejancu and Papaghuic [20] gave an equivalent definition by using
invariance of Dp, D⊥p . Similarly by considering the Proposition 4.1 and Proposition 4.2 we get an
equivalent definition.

Definition 4.3. Let (M̄4m+2, Ḡ, H̄, Ū , V̄ , ū, v̄, g) be a normal complex contact metric manifold,
Mn+2 be a complex submanifold of M̄ and Ū , V̄ be tangent to M . If following conditions are
satisfied then M is called a semi-invariant submanifold.

1. TM = D ⊕D⊥ ⊕ sp{Ū , V̄ }.

2. The distribution D is invariant by Ḡ and H̄; that is, ḠD = D and H̄D = D .

3. The distribution D⊥ is anti-invariant by Ḡ and H̄; that is, ḠD⊥ ⊂ TM⊥ and H̄D⊥ ⊂ TM⊥.

Since ḠH̄K = J̄K, for any vector field K in Γ(D) or Γ(D⊥) above conditions are also satisfied
for J̄ .

Let M be a semi-invariant submanifold of a normal complex contact metric manifold M̄ . If
dimD = 0 then M is called an anti-invariant submanifold of M̄ , and if dimD⊥ = 0 then M is called
an invariant submanifold of M̄ . If ḠD⊥ = H̄D⊥ = TM⊥, then M is called generic submanifold of
M̄ [21].

For a semi-invariant submanifold M of a normal complex contact metric manifold M̄ , the
projection morphisms of TM to D and D⊥ are denoted by ϕ and ψ, respectively . Then for all
K ∈ Γ(TM) we can write

K = ϕK + ψK + ū(K)Ū + v̄(K)V̄ (4.1)

where ϕK and ψK are tangential and normal parts of K, respectively. Also we have

J̄K = ϕJ̄K + ψJ̄K + v̄(K)Ū − ū(K)V̄ . (4.2)
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Similarly for N, J̄N ∈ TM⊥ we have

N = tN + fN and J̄N = tJ̄N + fJ̄N

where tN, tJ̄N is tangential part, and fN, fJ̄N is the normal part of N, J̄N . On the other hand
from (3.7) and (3.8) we have BN ∈ Γ(D⊥), BJ̄N ∈ Γ(D⊥), CN ∈ Γ(TM⊥) and CJ̄N ∈ Γ(TM⊥).
Thus we obtain an f−structure on the normal bundle by following same steps with the proof of
Proposition 1.3 in [20].

From now on we will denote a semi-invariant submanifold of a normal complex contact metric
manifold by M.

Proposition 4.4. On the normal bundle of M there exist an f−structure C.

For M we have following decomposition of normal space TM⊥:

TM⊥ = ḠD⊥ ⊕ H̄D⊥ ⊕ J̄D⊥ ⊕ ϑ.

We can take an orthonormal frame

{e1, e2, ..., em, Ḡe1, Ḡe2, ..., Ḡem, H̄e1, H̄e2, ..., H̄em, J̄e1, J̄e2, ..., J̄em, Ū , V̄ }

of M̄ such that {e1, e2, ..., en} are tangent to M . Therefore the set {e1, e2, ..., en, en+1 = Ū , en+2 =
V̄ } is an orthonormal frame of M . We can consider {e1, e2, ..., en} such that {e1, e2, ..., ep} is
an orthonormal frame of D⊥, {ep+1, ep+2, ..., en} is an orthonormal frame of D . Moreover we
can take {en+3, ..., e4m−n} as an orthonormal frame of TM⊥ such that {en+3, ..., en+2+3p} is an
orthonormal frame of ḠD⊥ ⊕ H̄D⊥ ⊕ J̄D⊥ and {en+3+3p, en+4+3p, ..., e4m+2} is an orthonormal
frame of ϑ. From the definition of semi-invariant manifold we can take en+3 = Ḡe1, en+4 =
Ḡe2 , ..., en+2+p = Ḡep, en+3+p = H̄e1, en+4+p = H̄e2 , ..., en+2+2p = H̄ep, en+3+2p =
J̄e1, en+4+2p = J̄e2 , ..., en+2+3p = J̄ep. Therefore we have following orthonormal basis:

D = sp{e p+1
4
, e p+2

4
, ..., en−3

4
, Ḡe p+1

4
, Ḡe p+5

4
, ..., Ḡen−3

4
, H̄e p+1

4
,

H̄e p+2
4
, ..., H̄en−3

4
, J̄e p+1

4
, J̄e p+2

4
, ..., J̄en−3

4
}

D⊥ = sp{e1, e2, ..., ep}

and

ḠD⊥ ⊕ H̄D⊥ ⊕ J̄D⊥ = sp{Ḡe1, Ḡe2, ..., Ḡep, H̄e1, H̄e2, ..., H̄ep,

J̄e1, J̄e2, ..., J̄ep}
ϑ = sp{ep+1, ep+2, ..., e 4m−n+3p

4
, Ḡep+1,

Ḡep+2, ..., Ḡe 4m−n+3p
4

, H̄ep+1, H̄ep+2,

..., H̄e 4m−n+3p
4

, J̄ep+1, J̄ep+2, ..., J̄e 4m−n+3p
4
}.

For M we compute covariant derivatives of Ḡ, H̄, J̄ by given tangential and normal components.
From (2.6), (2.7,) (2.8), (3.1), (3.2), (3.3), (3.5), (3.6), (3.7) and (3.8) and by easy computation we
have following lemmas.
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Lemma 4.5. For any K,L ∈ Γ(TM) we have

ϕ∇KPL− ϕAQLK = P∇KL− ū(L)ϕK + σ̄(K)P J̄L (4.3)

− 2v̄(K)ϕJ̄L− v̄(L)ϕJ̄K + 2v̄(K)ϕJ̄L0

− v̄(K)(ϕ∇Ū J̄PL0 − J̄ϕ∇ŪPL0

− ϕAJ̄QL0
Ū + J̄ϕAQL0Ū),

ψ∇KPL− ψQLK = Bh(K,L) + σ̄(K)QJ̄L (4.4)

− 2v̄(K)ψJ̄L− ū(L)ψK − v̄(L)ψJ̄K

+ v̄(K)ψJ̄L0 − v̄(K)(ψ∇Ū J̄PL0 − J̄ψ∇ŪPL0

− ψAJ̄QL0
Ū + J̄ψAQL0

Ū −BJ̄Ch(Ū , PL0)),

ū(∇KPL−AQLK) = ḡ(ϕK,ϕL) + ḡ(ψK,ψL) (4.5)

+ (dσ̄(Ū , V̄ )− 2)v̄(K)v̄(L)− v̄(K)(ū(∇Ū J̄PL0

−AJ̄QL0
Ū) + v̄(AQL0

Ū −∇ŪPL0)),

v̄(∇KPL−AQLK) = ḡ(ϕJ̄K,ϕL) + ḡ(ψJ̄K,ψL) (4.6)

− (dσ̄(Ū , V̄ )− 2)v̄(K)ū(L)− v̄(K)(v̄(∇Ū J̄PL0

−AJ̄QL0
Ū) + ū(∇ŪPL0 +AQL0

Ū),

h(K,PL)− Ch(K,L) +Q∇KL = ∇⊥KQL− v̄(K)(h(Ū , J̄PL0) (4.7)

−QJ̄Bh(Ū , PL0)− CJ̄Ch(Ū , PL0)

+∇⊥Ū J̄QL0 − J̄∇⊥QL0

Ū
).

Lemma 4.6. For arbitrary vector fields K and L on M we have

ϕ∇KP J̄L− ϕAQJ̄LK = P J̄∇KL− σ̄(K)PL+ 2ū(K)ϕJ̄L (4.8)

+ ū(L)ϕJ̄K − v̄(L)ϕK − 2ū(K)ϕJ̄L0

− ū(K)(ϕ∇Ū J̄PL0 − J̄ϕ∇ŪPL0

− ϕAJ̄QL0
Ū + J̄ϕAQL0

Ū),

ψ∇KP J̄L− ψAQJ̄LK = BJ̄h(K,L)− σ(K)QL+ 2ū(K)ψJ̄L (4.9)

+ ū(L)ψJ̄K − v̄(L)ψK − 2ū(K)ψJ̄L0

− ū(K)(ψ∇Ū J̄PL0 − J̄ψ∇ŪPL0

− ψAJ̄QL0
Ū + J̄ψAQL0

Ū −BJ̄Ch(Ū , PL0)),
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ū(∇KP J̄L−AQJ̄LK) = −ḡ(ϕJ̄K,ϕL)− ḡ(ψJ̄K,ψL) (4.10)

− (dσ(Ū , V̄ )− 2)v̄(K)v̄(L) + ū(K)(−ū(∇Ū J̄PL0

−AJ̄QL0
Ū) + v̄(∇ŪPL0 +AQL0

Ū),

v̄(∇KP J̄L−AQJ̄LK) = ḡ(ϕK,ϕL) + ḡ(ψK,ψL) (4.11)

+ (dσ(Ū , V̄ )− 2)ū(K)ū(L)− ū(K)(ū(∇ŪPL0

+AQL0
Ū) + v̄(∇Ū J̄PL0 −AJ̄QL0

Ū)

+ v̄(∇ŪPL0) + ū(AJ̄QL0
Ū) + v̄(AJ̄QL0

Ū)),

h(K,P J̄L)− CJ̄h(K,L) = −QJ̄∇KL−∇⊥KQJ̄L (4.12)

− ū(K)(h(Ū , J̄PL0)−QJ̄Bh(Ū , PL0)

− CJ̄Ch(Ū , PL0) +∇⊥Ū J̄QL0 − J̄∇⊥QL0

Ū
).

Lemma 4.7. For any K,L ∈ Γ(TM) we have

ϕ∇KBN − ϕACNK − PANK = v̄(K)(ϕAJ̄BN Ū + ϕJ̄∇ŪBN
− ϕAJ̄CN Ū − ϕJ̄ACN Ū),

ψ∇KBN − ψACNK −B∇⊥KN = σ̄(K)BJ̄N + v̄(K)(ψAJ̄BN Ū

+ ψJ̄∇ŪBN +BJ̄Ch(Ū , BN) + ψAJ̄CN Ū

− ψJ̄ACN Ū +BJ̄C∇⊥UCN),

ū(∇KBN)− ū(ACNK) = v̄(K)[ū(AJ̄BN Ū) + v̄(∇UBN)

+ ū(ACJ̄N Ū) + v̄(ACN Ū)],

v̄(∇KBN)− v̄(ACNK) = v̄(K)[v̄(AJ̄BN Ū)− ū(∇UBN)

+ v̄(AJ̄CN Ū) + ū(ACN Ū)],

h(K,BN) +∇⊥KCN −QANK = C∇⊥KN + σ̄(K)CJ̄N − v̄(K)[∇⊥ŪBJ̄N
−QJ̄Bh(Ū , BN) +∇⊥Ū J̄CN
−QJ̄C∇⊥ŪCN − CJ̄C∇

⊥
ŪCN ].

Lemma 4.8. For any K,L ∈ Γ(TM) we have

ϕ∇KBJ̄N − ϕACJ̄NK + PANK = ū(K)(−ϕAJ̄BN Ū
+ ϕJ̄∇UBN − ϕAJ̄CN Ū + ϕJ̄ACN Ū),

ψ∇KBJ̄N − ψACJ̄NK −BJ̄∇⊥KN = σ̄(K)BN + ū(K)(−ψAJ̄BN Ū
− ψJ̄∇ŪBN −BJ̄Ch(Ū , BN)− ψAJ̄CN Ū
+ ψJ̄ACN Ū −BJ̄C∇⊥UCN),
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ū(∇KBJ̄N)− ū(ACJ̄NK) = −ū(K)[ū(AJ̄BN Ū)

+ v̄(∇UBN) + ū(ACJ̄N Ū) + v̄(ACN Ū)],

v̄(∇KBJ̄N)− v̄(ACJ̄NK) = −ū(K)[v̄(AJ̄BN Ū)

− ū(∇UBN) + v̄(AJ̄CN Ū)− ū(ACN Ū)],

h(K,BJ̄N) +∇⊥KCJ̄N −QANK = CJ̄∇⊥KN + σ̄(K)CN + ū(K)[∇⊥ŪBJ̄N
−QJ̄Bh(Ū , BN)− CJ̄Ch(Ū , BN)

+∇⊥Ū J̄CN −QJ̄C∇
⊥
ŪCN − CJ̄C∇

⊥
ŪCN ].

As we know the covariant derivatives of structure vector fields are important. In the following
lemma we give the covariant derivatives of Ū and V̄ with ∇ on M .

Lemma 4.9. For any K,L ∈ Γ(TM) we have

∇KŪ = −PK + σ̄(K)V̄ , h(K, Ū) = −QK
∇K V̄ = −P J̄K − σ̄(K)Ū , h(K, V̄ ) = −QJ̄K.

Proof. From (2.2) and (3.1) we get

−ḠK + σ̄(K)V̄ = ∇KŪ + h(K, Ū),

and by consider tangent and normal components we obtain (4.13). Similarly from (2.3) and (3.1)
we get (4.13). q.e.d.

Also from these lemmas, we get following corollaries.

Corollary 4.10. For M we have

h(K, Ū) = h(K, V̄ ) = 0

∇KŪ = −PK + σ̄(K)V̄ , ∇K V̄ = −P J̄K + σ̄(K)Ū

for all K ∈ Γ(D), and

h(K, Ū) = −QK, h(K, V̄ ) = −QJ̄K
∇KŪ = σ̄(K)V̄ , ∇K V̄ = −σ̄(K)Ū

for all K ∈ Γ(D⊥).

Corollary 4.11. For M we have

h(Ū , Ū) = h(V̄ , V̄ ) = h(Ū , V̄ ) = 0

∇Ū Ū = σ̄(Ū)V̄ , ∇V̄ Ū = σ̄(V̄ )V̄

∇Ū V̄ = −σ̄(Ū)Ū , ∇V̄ V̄ = −σ̄(V̄ )Ū .
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5 Integrability of distributions

In the submanifold theory integrability of distributions is an important notion. In this work we
have two distributions, D and D⊥. In this section we give some result about integrability of
D, D⊥, D ⊕ D⊥, D ⊕ sp{Ū , V̄ } and D⊥ ⊕ sp{Ū , V̄ }. Although the horizontal distribution H is
never involute, as we shall see some of above distributions are involute on M.

Lemma 5.1. For M we have

ḡ(AḠKL,Z) = ḡ(AḠLK,Z) (5.1)

ḡ(AH̄KL,Z) = ḡ(AH̄LK,Z) (5.2)

ḡ(AJ̄KL,Z) = ḡ(AJ̄LK,Z) (5.3)

for all K,L ∈ Γ(D) , Z is tangent to M and Z /∈ sp{Ū , V̄ }.

Proof. Let K,L ∈ Γ(D) and Z ∈ Γ(TM). Since ḠK = QK ∈ Γ(TM⊥), we have

∇̄LḠK = −AḠKL+∇⊥L ḠK (5.4)

and

∇̄LZ = ∇LZ + h(L,Z).

Thus we get

ḡ(∇̄LZ, ḠK) = ḡ(h(L,Z), ḠK)

and since ḠK ∈ Γ(TM⊥) then ḡ(∇̄LZ, ḠK) + ḡ(Z, ∇̄LḠK) = 0 and therefore from (5.4) we get

ḡ(AḠKL,Z) = ḡ(h(L,Z), ḠK).

In addition since h is symmetric and from (5.4) we have

ḡ(AḠKL,Z) = −ḡ(Ḡ∇̄ZL,K)

= ḡ((∇̄ZḠ)L,K)− ḡ(∇̄ZḠL,K).

From (2.6) and (2.5) we have

ḡ((∇̄ZḠ)L,K) = ḡ(dσ(L,K)V̄ , Z)

and so we get

ḡ(AḠKL,Z) = ḡ(dσ(L,K)V̄ , Z)− ḡ(∇̄ZḠL,K).

On the other hand since ḡ(ḠL,K) = 0 and from (3.1) we have

ḡ(AḠKL,Z) = ḡ(dσ(L,K)V̄ , Z) + ḡ(∇̄ZK, ḠL)

= ḡ(dσ(L,K)V̄ , Z) + ḡ(∇ZK + h(Z,K), ḠL)

= ḡ(dσ(L,K)V̄ , Z) + ḡ(h(Z,K), ḠL)
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and thus, from (5.5) we get

ḡ(AḠKL,Z) = ḡ(dσ(L,K)V̄ , Z) + ḡ(AḠLK,Z).

If Z /∈ sp{Ū , V̄ } we get (5.1). By following same steps one can show (5.2), (5.3). q.e.d.

Lemma 5.2. For all K,L ∈ Γ(D⊥) we have [K,L] ∈ Γ(D ⊕D⊥).

Proof. Let K,L ∈ Γ(D⊥). Then we have

ḡ([K,L], Ū) = ḡ(∇̄KL− ∇̄LK, Ū)

= −ḡ(∇̄KŪ , L) + ḡ(∇̄LŪ ,K).

Therefore from (2.2) we have ḡ([K,L], Ū) = 0. Also ḡ([K,L], V̄ ) = 0 can be showed by similar way.
So we obtain [K,L] ∈ Γ(D ⊕D⊥).

q.e.d.

Theorem 5.3. The anti-invariant distribution is involutive.

Proof. Let K,L ∈ Γ(D⊥). From (2.9) we have

(∇̄KḠ)L = σ̄(K)H̄L+ ḡ(K,L)Ū .

On the other hand ḠL ∈ Γ(D) and from (3.1) and (3.2) we have

−AḠLK +∇⊥KL− Ḡ∇KL− Ḡh(K,L) = σ̄(K)H̄L+ ḡ(K,L)Ū . (5.5)

Substituting L by K in (5.5) and thus subtracting the obtained relations we get

−Ḡ[K,L] = AḠLK −AḠKL−∇⊥KḠL−∇⊥L ḠK + σ̄(K)H̄L− σ̄(L)H̄K.

Now we take an arbitrary normal section N ∈ Γ(ϑ) and, by using (2.6) and (3.2) we have

ḡ(∇⊥L ḠK,N) = −ḡ(AḠNL,K). (5.6)

Substituting L by K in (5.6) and, subtracting the obtained relations , since AḠN is symmetric we
have

ḡ(∇⊥KḠL−∇⊥L ḠK,N) = 0.

Hence ∇⊥KḠL − ∇⊥L ḠK ∈ ḠD⊥ ⊕ H̄D⊥ ⊕ J̄D⊥. On the other hand for Z ∈ Γ(D) from (5.6) we
have

ḡ(−Ḡ[K,L], ḠZ) = 0

and therefore we get

ḡ([K,L], Ḡ2Z) = ḡ([K,L], Z) = 0.

So we obtain [K,L] ∈ Γ(D). q.e.d.
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Theorem 5.4. D⊥ ⊕ sp{Ū , V̄ } distribution is involute.

Proof. Let K ∈ Γ(D⊥) and L ∈ Γ(D). Then from (2.2) we have

ḡ([K, Ū ], L) = −ḡ(∇̄ŪK,L).

Now let take Z ∈ Γ(D) such that L = ḠZ and by using (2.9) we have

(∇̄ŪH)Z = σ(Ū)H̄Z

and from (3.1) we get

ḡ([K,U ], L) = ḡ(∇̄Ū ḠZ,K) = −ḡ(∇ŪZ, ḠK) = 0.

Therefore [K, Ū ] ∈ D⊥ ⊕ sp{Ū , V̄ }. Following by same steps one can show the [K, Ū ] ∈ D⊥ ⊕
sp{Ū , V̄ }. Consequently by consider (5.3) the theorem is proved. q.e.d.

Definition 5.5. If M is neither an invariant submanifold (i.e dimD⊥ = 0 ) nor an anti-invariant
submanifold (i.e dimD = 0 ), then it is called a proper semi-invariant submanifold.

Theorem 5.6. The invariant distribution is never involute.

Proof. For K,L ∈ Γ(D) from (2.2) we get

ḡ([K,L], Ū) = 2ḡ(ḠK,L)

and from (2.3) we have
ḡ([K,L], Ū) = 2ḡ(ḠK,L).

Let choose L = H̄K for all L ∈ Γ(D) such that H̄K is a unit vector field. Thus the second
fundamental form can not vanish. So D is not involute. q.e.d.

From this theorem we have :

Corollary 5.7. Let M be a proper semi-invariant submanifold. Then the distribution D ⊕D⊥ is
never involute.

We need two following lemmas to get necessary and sufficient conditions for the integrability of
D ⊕ sp{Ū , V̄ }.

Lemma 5.8. Let M be a semi-invariant submanifold. Then, we have

ḡ(h(K,L), ḠZ) = ḡ(∇KZ, ḠL)

ḡ(h(K,L), H̄Z) = ḡ(∇KZ, H̄L)

ḡ(h(K,L), J̄Z) = ḡ(∇KZ, J̄L)

for all vector fields K ∈ Γ(TM), L ∈ Γ(D) and Z ∈ Γ(D).
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Proof. Let N = ḠZ then from (5.5) we have

ḡ(h(K,L), ḠZ) = ḡ(AḠZK,L) = −ḡ((∇̄KḠ)Z + Ḡ∇̄KZ,L).

On the other hand from (2.6) we get

ḡ(h(K,L), ḠZ) = ḡ(∇̄KZ, ḠL).

By following same steps, the equations: ḡ(h(K,L), H̄Z) = ḡ(∇KZ, H̄L) and
ḡ(h(K,L), J̄Z) = ḡ(∇KZ, J̄L) can be obtained. q.e.d.

Lemma 5.9. For M we have [K, Ū ] and [K, V̄ ] ∈ Γ(D ⊕ sp{Ū , V̄ }).

Proof. By using (3.1) and (4.13) we have

ḡ([K, Ū ], L) = ḡ(∇ŪL,K)

for each L ∈ Γ(D⊥) and K ∈ Γ(D). Now we take Z ∈ Γ(D) such that K = ḠZ and from (5.5) we
get

ḡ(∇ŪL,K) = ḡ(h(Ū , Z), ḠL) = 0.

Thus ḡ([K, Ū ], L) = 0 and by following same steps we get ḡ([K, V̄ ], L) = 0, it follows the assertion
of the lemma. q.e.d.

Theorem 5.10. The distribution D ⊕ sp{Ū , V̄ } is involutive if and only if we have

h(K, ḠL) = h(ḠK,L). (5.7)

Proof. From (4.7) we obtain

h(K,PL)− Ch(K,L) +Q∇KL = 0 (5.8)

for all K,L ∈ Γ(D). Since h is symmetric substituting L by K in (5.8) we get h(K,PL) −
h(L,PK) = Q[K,L]. In this way [K,L] ∈ D ⊕ sp{Ū , V̄ } if and only if (5.7) is satisfied. Taking
into account (5.9), the proof is completed. q.e.d.

Finally we obtain a result for total umbilical semi-invariant submanifold.

Theorem 5.11. If M is a total umbilical submanifold then M is an invariant submanifold.

Proof. Let M be a total umbilical semi-invariant submanifold. Then for ∀Z ∈ Γ(D)⊥ from (3.4)
we have

h(Z, Ū) = ḡ(Z, Ū)µ = 0.

On the other hand from (4.13) we have h(Z, Ū)−QZ = ḠZ. Thus ḠZ = 0 and D⊥ = 0. So M is
an invariant submanifold. q.e.d.

From above theorem we obtain following corollary.

Corollary 5.12. There does not exist total umbilical proper semi-invariant submanifold of a nor-
mal complex contact metric manifold.
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